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MEDICAL IMAGE

In the health care system, there has been a dramatic increase in demand for medical image
services, e€.2. Radiography, endoscopy, Computed Tomography (CT), Mammography

Images (MG), Ultrasound images, Magnetic Resonance Imaging (MRI), Magnetic Reso-
nance Angiography (MRA), Nuclear medicine imaging, Positron Emission Tomography

(PET) and pathological tests. Besides, medical images can often be challenging to analyze
and time-consuming process due to the shortage ot radiologists.
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Al (ANN and DL) /
i

Artificial Intelligence (Al) can address these problems. Machine Learning (ML) 1s an
application of Al that can be able to function without being specifically programmed,
that learn from data and make predictions or decisions based on past data. ML uses three
learning approaches, namely, supervised learning, unsupervised learning, and semi-
supervised learning. The ML techniques include the extraction of features and the

selection of suitable features for a specific problem requires a domain expert. Deep
learning (DL) techniques solve the problem of feature selection. DL 1s one part of ML,

and DL can automatically extract essential features from raw input data
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN) form the basis for most of the DLA. ANN 1s a
computational model structure that has some performance characteristics similar to
biological neural networks. ANN comprises simple processing units called neurons or
nodes that are interconnected by weighted links. A biological neuron can be described

mathematically in Eq. (). Figure 3 shows the simplest artificial neural model known as
the perceptron.
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Artificial Neural Networks (ANN)

In the neural networks, the learning process 1s modeled as an iterative process of
optimization of the weights to minimize a loss function. Based on network performance,
the weights are modified on a set of examples belonging to the training set. The
necessary steps of the training procedure contain forward and backward phases. For
Neural Network training, any of the activation functions in forwarding propagation 1s

selected and BP training 1s used for changing weights.
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Artificial Neural Networks (ANN)

Table 1 Activation functions

Function name Function equation Function derivate
Sigmoid [86] f) == f(x) =f @1 —f(x)
Hyperbolic tangent [87] f(x) = tanh(x) = 5= -1 f’ {;.:j =1 —f(;r] 2
Soft sign activation flx) = :I . (x) = W
_ Ep

Rectified Linear Unit [68, 104] (ReLU) _JOx<0 JO x<0

flx) = xx =0 11 x =0
Leaky Rectified Linear Unit [94] ax x < (0 a x < ()
(leaky ReLU) f(x) = x x =0 11 x =0

Parameterized Rectified Linear Unit(PReLU) [47] PReLU is the same as leaky RelLU. The difference is = can
be learmed from training data via backpropagation

\ Randomized Leaky Rectified Linear Unit [180] _Jaxx< 0 oy Jax<0
flx) = x x =0 fx) = 1 x =0
Soft plus [32] f(x)=1In(1 + &Y f(x) = 1+l= :
Exponential Linear Unit (ELU) [24, 137] _=(e"-1) x< 0 o Jfx)+Fex <0
flx)=19. >0 fx) =197 >0
Scaled exponential Linear Unit (SELU) [67] afe™—1) x < 0 , )L Aex < 0
) =A@ XSO0y JI) A A < o
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A. RESTRICTED BOLTZMANN MACHINE

Restricted Boltzmann machine (RBM) i1s a kind of proba-
bilistic graphical models that can be interpreted as stochastic
neural networks [28]. A typical two-layer RBM includes a
visible layer that contains the input we know and a hid-
den layer that contains the latent vanables, as described in
Fig. 2(a). RBMs are organized as a bipartite graph, where
each visible neuron i1s connected to all hidden neurons
and vice versa, but any two unils are not connected in
the same layer. RBMs have seen successful applications in
many helds, such as collaborative filtering [29] and network
anomaly detection [30]. Multiple stacked RBM layers can
form a deep belief network (DBN), which consists of a
visible layer and multiple hidden layers. The training of a
DBN follows a layer-by-layer method, where each layer 1s
treated as an RBM trained on top of the previously trained
layer [31]. Many applications can benefit from the structure
of DBNs, such as fault detechon classification i industrial
environments, threat identification in secunity alert systems,
and emotional feature extraction out of images [17].
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B. AUTOENCODER

An autoencoder includes an input layer and an output layer
that are connected by one or multiple mdden layers [32],
as illustrated in Fig. 2(b). The shape of the mput layer and
the output layer are the same. The AE can be divided into
two parts, i1.e., an encoder and a decoder. The encoder learns
the representative charactenstics of the input and transforms
it into other latent features (usually in a compressing way).
And the decoder receives the latent features of the encoder
and aims to reconstruct the onginal form of the input data,
minimizing the reconstruction error. Similarly, an AE can be
formed as a deep architecture by stacking multiple layers into
the hidden layer. There are several vanants and extensions
of AEs, such as sparse AE [33], denoising AE [34], and
vanational AE [35].
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C. DEEP NEURAL NETWORKS

Compared to the traditional artificial neural network (ANN)
that has shallow structure, deep neural network (DNN) (or
deep fully connected neural network) usually has a deeper
layer structure for more complicated learning tasks [32]. A
DNN consists of an input layer, several hidden layers, and
an output layer, where the output of each layer 1s fed to the
next layer with activation functions. At the last layer, the
final output representing the model prediction i1s produced.
Optimization algorithms such as Stochastic Gradient Decent
(SGD) [36] and backpropagation [37] are mostly used in the
training process. DNNs are widely used in feature extraction,
classification and function approximation.
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D. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are designed to pro-
cess data that comes in the form of multple arrays, for exam-
ple, a color image composed of three 2D arrays containing
pixel intensities in the three color channels [27]. A CNN
receives 2D data structures and extracts high-level features
through convolutional layers as descnibed in Fig. 2(c), which
15 the core of CNN architecture. By going through the 2D
data with a set of moving filters and the pooling functions,
CNN extracts the spatial correlations between adjacent data
by calculating the inner product of the input and the filter. Af-
ter that, a pooling block 1s operated over the output to reduce
the spatial dimensions and generate a high-level abstraction.
Compared to traditional fully connected deep networks, CNN
can effectively decrease the parameter numbers of network
and extract the spatial correlations in the raw data, mitigating
the nisk of overfitting [38]. The above advantages make
CNN achieve significant results in many applications, such
as object detection [39] and health monitoring [40].

Deep learning /
7

(a) Restricted Boltzmann Machine (b) Autoencoder (c) Convolutional Neural Network

Metwork Pali

Artion

Environment

State -

obserye state

(d) Deep Neural Network (e) Recurrent Neural Network (f) Deep Reinforcement Learning

FIGURE 2: The structures of different deep learning models.

Deep Learning for Edge Computing
Applications: A State-of-the-art Survey

FANGXIN WANG!' (Student Member, IEEE), MIAO ZHANG', XIANGXIANG WANG!',
XIAOQIANG MA2, AND JIANGCHUAN LIU' (Fellow, IEEE)
5A 156, Canada

'School of Computing Scicnce, Simon Frascr University, Bumaby, BC V. 56, O
*5chool of Electronic Information and Communications, Huarhong University of Science and Technology, Wuhan 430074, China

Corresponding Author: Xiaogiang Ma (mxghust& gmail com).



E. RECURRENT NEURAL NETWORKS

Different from CNNs that are good at abstracting spatial
features, recurrent neural networks (RNNs) are designed for
processing sequential or tme-series data. The input to an
RNN includes both the current sample and the previously
observed samples. Specifically, each neuron of an RNN layer
not only receives the output of its previous layer but also
receives the stored state of from previous time steps, as
depicted in Fig. 2(e). With this special architecture, RNN is
able to remember previous information for integrated pro-
cessing with the current information. However, RNNs can
only look back for a few steps due to the gradient explosion
and long-term dependencies. To solve this problem, Long
Short-Term Memory (LSTM) network [41] 15 proposed to

control the flow of information. In LSTM model, the forget
gate 15 utilized to control the cell state and decide what to
keep in the memory. Through the learning process, stored
computations in the memory cells are not distorted over time,
which particularly achieves better performance when data 1s
characterized in long dependency [42]. RNN and LSTM are
widely used in various sequential scenarios, such as language
processing [43] and activity recognition [44].
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F. DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) [7] 15 a combination of
deep learning (DL) and reinforcement learming (RL) [45]. Tt
aims to build an agent that 1s able to learn the best action
choices over a set of states through the interaction with the
environment, s0 as to maximize the long-term accumulated
rewards. Different from traditional RL, DRL utilizes a deep
neural network to represent the policy given its strong rep-
resentation ability to approximate the value function or the
direct strategy. DRL can be categonized into value-based
models, such as Deep Q-Learning (DQL), Double DQL [46]
and Duel DQL [47], and policy-gradient-based models, such
as deep deterministic policy gradient (DDPG) [48] and asyn-
chronous advantage actor-critic (A3C) [49]. The DRL has
successfully applied in many fields, such as computer
saming [7], chess gaming [8] and rate adaptation [50].
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Use of deep learning in

Table 3 An overview of the DLA for the study of X-ray images

medical imaging

Reference Dataset Method Application Metncs
Lo et al., 1995 - CNN Two-layer CNN, each with 12 ROC
[89] 5= five filters for lung nodule
detection.
5.Hwang et al. KIT, MC, and Shenzhen Deep CNN The first deep CNN-based AUC
2016 [57] Tuberculosis screening system
with transfer learmning technique
Rajpurkar et al. ChestX-ray14 CNN Detects Pneumonia using F1 score
2017 [122] CheXNet i1s a 121-layer CNN
from a chest X-ray image.
Lopes & Valiat Shenzhen and Montgomery CNN Comparative analysis of Accuracy, ROC
2017 [91] Pre-trained CINN as feature ex-
tractors for tuberculosis detec-
tion
Mittal et al. 2018 JSRT LF-SegNet Segmentation of lung field from Accuracy
[99] CXR images using Fully
convolutional encoder-decoder
network
E.J.Hwang et al. 57481 CXR images CNN Deep learming-based automatc ROC
2019 [58] detection (DLAD) algorithm for
tuberculosis detechon on CXR
Souza et al. 2019 Montgomery CNN Segmentation of lungs in CXR for Dice coefficient
[148] detection and diagnosis of
pulmonary diseases using two
CNN architecture
Hooda et al. [53] Shenzhen, Montgomery, Belarus, JSET CNN An ensemble of three pre-trained Accuracy, ROC
architectures ResiNet, AlexNet,
and GoogleNet for TB detection
Xu et al. 2019 chest X-rayl4 CNN, Design a hierarchical CNN Accuracy, Fl-score, and AUC
[181] CXNet-ml structure for a new network
CXNet-ml to detect anomaly of
chest X-ray images
Murphy et al. 5565 CXR images Deep leaming-based CADATB ROC

2019 [103]

software evaluation
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Table 3 (continued)

Use of deep learning in medical imaging /
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Reference Dataset Method Application Metrics
Rajaraman and RSNA, Pediatric pneumonia, and Indiana, CNN An ensemble of modality-specific Accuracy,
Antam 2020 deep leamming models for AUC, CI
[119] Tuberculosis (TB) detection
from CXR
Capizzi et al. Open data set from radiologykey.com PNN The fuzzy system, combined with Accuracy
2020 [15] a neural network, can detect
low-contrast nodules.
Abbas et al. 2020 196 X-ray images CNN Classification of COVID-19 CXR Accuracy, SN, SP
[2] images using Decompose,
Transfer, and Compose
(DeTraC)
Basu et al. 2020 225 COVID-19 CXR images CNN DETL (Domain Extension Accuracy
[7] Transfer Leaming) method for
the screening of COVID-19
from CXR images
Wang & Wong 13,975 X-ray images CNN A deep convolutional neural Accuracy, SN, PPV.
2020 [165] network COVID-Net design for
the detection of COVID-19
cases
Ozturk et al. 127 X-ray images CNN Deep leaming-based DarkCovid Accuracy.
2020 [110] net model to detect and classify
COVID-19 cases from X-ray
images
Loey et al. 2020 306 X-ray images AlexNet A GAN with deep transfer leaming Accuracy,
[90] google for COVID-19 detection in
Resnet18 limited CXR 1mages.
Apostolopoulos 1427 X-ray images CNN Transfer Learning-based CNN Accuracy, SN, SP
& Mpesiana architectures to the detection of

2020 [3]

the Covid-19.
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Challenges of the DL Applications in
Medical Image Analysis

The lack of high-quality annotated data is one of the greatest
problems with deep learning (DL) algorithms used for medical image
analysis. For DL models to perform well and generalize, they need a
lot of labeled data. But getting high-quality annotations for medical
photos is challenging for a number of reasons: restricted accessibility:
Because it is expensive and time-consuming to capture and annotate
medical pictures, the amount of data from annotated images is
constrained (76). Additionally, the process of annotating calls for
medical professionals with particular training and understanding,
who are not always available. Due to changes in patient anatomy,

imaging modality, and disease pathology, medical pictures are
complicated and extremely varied. Annotating medical images
requires a high degree of accuracy and consistency, which can
be challenging for complex and heterogeneous medical conditions.
Privacy and ethical issues: The annotation process has the potential to
make medical photographs containing sensitive patient data
vulnerable to abuse or unauthorized access. Medical image analysis
has a significant difficulty in protecting patient privacy and
confidentiality while preserving the caliber of annotated data.
Annotating medical pictures requires making subjective assessments,
which might result in bias and variability in the annotations. These
variables may have an impact on the effectiveness and generalizability
of DL models, especially when the annotations are inconsistent among
datasets or annotators (77). To address the challenge of limited
availability of high-quality annotated data, several approaches have
been proposed, including:

Transfer learning: To enhance the performance of DL models on
smaller datasets, transfer learning uses pre-trained models that
have been learned on big datasets. By using this method, the
volume of annotated data needed to train DL models may
be decreased, and the generalizability of the models can
be increased.

Data augmentation: By applying modifications to already-
existing, annotated data, data augmentation includes creating
synthetic data. The diversity and quantity of annotated data
available for DL model training may be increased using this
method, and it can also raise the models’ resistance to fluctuations
in medical pictures.

Active learning: Active learning involves selecting the most
informative and uncertain samples for annotation, rather than
annotating all the data. This approach can reduce the annotation
workload and improve the efficiency of DL model training,
Collaborative annotation: Collaborative annotation involves
engaging medical experts, patients, and other stakeholders in the
annotation process to ensure the accuracy, consistency, and
relevance of annotations to clinical needs and values.

Medical image analysis using deep
learning algorithms
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Challenges of the DL Applications in
Medical Image Analysis

Overall, addressing the challenge of limited availability of high-
quality annotated data in medical image analysis requires a
combination of technical, ethical, and social solutions that can
improve the quality, quantity, and diversity of annotated data while
ensuring patient privacy and ethical standards.

Deep learning algorithms for medical image analysis have a
significant problem in terms of data quality. The model’s performance
may be considerably impacted by the caliber of the data utilized to
train the deep learning algorithms (78). Obtaining medical pictures
may be difficult, and their quality can vary based on a number of
variables, such as the image capture equipment used, the image
resolution, noise, artifacts, and the imaging technique. Furthermore,
the annotations or labels used for training can also impact the quality
of the data. Annotations may not always be accurate, and they may
suffer from inter-and intra-observer variability, which can lead to
biased models or models with poor generalization performance. To
overcome the challenge of data quality, researchers need to establish
robust quality control procedures for both image acquisition and

annotation. Additionally, they need to develop algorithms that can
handle noisy or low-quality data and improve the accuracy of

annotations. Finally, they need to develop methods to evaluate the
quality of the data used to train the deep learning models (79).

Medical image analysis using deep
learning algorithms
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/.8.1. Multi-modal image analysis

Future research in medical image analysis utilizing deep learning
algorithms will focus on multi-modal picture analysis. Utilizing a
variety of imaging modalities, including MRI, CT, PET, ultrasound,
and optical imaging, allows for a more thorough understanding of a
patient’s anatomy and disease (101). This strategy can aid in enhancing
diagnostic precision and lowering the possibility of missing or
incorrect diagnoses. Multi-modal picture data may be used to train
deep learning algorithms for a range of tasks, including segmentation,
registration, classification, and prediction. An algorithm built on MRI
and PET data, for instance, might be used to identify areas of the brain
afflicted by Alzheimer's disease. Similarly, a deep learning algorithm
could be trained on ultrasound and CT data to identify tumors in the
liver. Multi-modal image analysis poses several challenges for deep
learning algorithms. For example, different imaging modalities have

different resolution, noise, and contrast characteristics, which can
affect the performance of the algorithm. Additionally, multi-modal
data can be more complex and difficult to interpret than single-
modality data, requiring more advanced algorithms and
computational resources (102). To address these challenges,
researchers are developing new deep learning models and algorithms

that can integrate and analyze data from multiple modalities. For

Future works

Future research in the fast-developing field of medical image

analysis utilizing deep learning algorithms has a lot of potential to

increase the precision and effectiveness of medical diagnosis and

therapy. Some of these areas include:

example, multi-modal fusion networks can be used to combine
information from different imaging modalities, while attention
mechanisms can be used to focus the algorithm’s attention on relevant
features in each modality. Overall, multi-modal image analysis holds
promise for improving the accuracy and efficiency of medical
diagnosis and treatment using deep learning algorithms. As these
technologies continue to evolve, it will be important to ensure that
they are being used safely, ethically, and in accordance with relevant
laws and regulations.

Multimodal-informax (MMIM) synthesizes fusion results from multi-modality input through a two-level mutual
information (MI) maximization. We use BA (Barber-Agakov) lower bound and contrastive predictive coding as the
target function to be maximized. To facilitate the computation, we design an entropy estimation module with
associated history data memory to facilitate the computation of BA lower bound and the training process.
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7.8.2. Explainable Al

Future research in deep learning algorithms for medical image
analysis will focus on explainable AI (XAI). XAl is the capacity of an
Al system to explain its decision-making process in a way that is
intelligible to a human (103). XAl can assist to increase confidence in
deep learning algorithms when employed in the context of medical
image analysis, guarantee that they are utilized safely and morally, and
allow clinicians to base their judgments more intelligently on the
results of these algorithms. XAl in medical image analysis involves
developing algorithms that can not only make accurate predictions or
segmentations but also provide clear and interpretable reasons for
their decisions. This can be particularly important in cases where the
Al system’s output contradicts or differs from the clinician’s assessment
or prior knowledge. One approach to XAl in medical image analysis
is to develop visual explanations or heatmaps that highlight the
regions of an image that were most important in the algorithm’s
decision-making process. These explanations can help to identify
regions of interest, detect subtle abnormalities, and provide insight
into the algorithm’s thought process (104). Another approach to XAl
in medical image analysis is to incorporate external knowledge or
prior information into the algorithm’s decision-making process. For
example, an algorithm that analyzes brain MRIs could be designed to

Future works

incorporate known patterns of disease progression or anatomical
landmarks. Overall, XAI holds promise for improving the
transparency, interpretability, and trustworthiness of deep learning
algorithms in medical image analysis. As these technologies continue
to evolve, it will be important to ensure that they are being used safely,
ethically, and in accordance with relevant laws and regulations (105).
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Future works

/7.8.3. Transfer learning

Future research in the field of deep learning-based medical image
processing will focus on transfer learning. Transfer learning is the
process of using previously trained deep learning models to enhance
a model’s performance on a new task or dataset. Transfer learning can
be particularly helpful in the interpretation of medical images as it can
eliminate the requirement for significant volumes of labeled data,
which can be challenging and time-consuming to gather. Researchers
can use pre-trained models that have already been trained on huge
datasets to increase the precision and effectiveness of their own
models by taking advantage of the information and representations
acquired by these models. Since transfer learning can do away with
the need for large amounts of labeled data, which can be difficult and
time-consuming to collect, it can be very useful in the interpretation
of medical pictures. By utilizing the knowledge and representations
amassed by pre-trained models that have previously been trained on
massive datasets, researchers may utilize them to improve the accuracy
and efficacy of their own models (106). The pre-trained model could
be a useful place to start for the medical image analysis problem since
it enables the model to learn from less data and might lessen the
possibility of overfitting. Additionally, transfer learning may increase
the generalizability of deep learning models used for medical picture
interpretation. Medical image analysis models may be able to develop
more reliable and generalizable representations of medical pictures
that are relevant to a wider range of tasks and datasets by making use
of pre-trained models that have learnt representations of real images.
Transfer learning has the potential to enhance the effectiveness,
precision, and generalizability of deep learning models used for
medical image interpretation. As these technologies continue to

evolve, it will be important to ensure that they are being used safely,
ethically, and in accordance with relevant laws and regulations.
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What Is a Pretrained Al Model?

A pretrained Al model is a deep learning model that's trained on large datasets to accomplish a specific task, and it can be
used as is or customized to suit application requirements across multiple industries.

Why Are Pretrained Al Models Used?

Instead of building an Al model from scratch, developers can use pretrained models and customize
them to meet their requirements.

To build an Al application, developers first need an Al model that can accomplish a particular task,
whether that's identifying a mythical horse, detecting a safety hazard for an autonomous vehicle
or diagnosing a cancer based on medical imaging. That model needs a lot of representative data to
learn from.

This learning process entails going through several layers of incoming data and emphasizing goals-
relevant characteristics at each layer.

To create a model that can recognize a unicorn, for example, one might first feed it images of
unicorns, horses, cats, tigers and other animals. This is the incoming data.

Then, layers of representative data traits are constructed, beginning with the simple — like lines
and colors — and advancing to complex structural features. These characteristics are assigned
varying degrees of relevance by calculating probabilities.

As opposed to a cat or tiger, for example, the more like a horse a creature appears, the greater the
likelihood that it is a unicorn. Such probabilistic values are stored at each neural netwark layer in
the Al model, and as layers are added, its understanding of the representation improves.

To create such a model from scratch, developers require enormous datasets, often with billions of
rows of data. These can be pricey and challenging to obtain, but compromising on data can lead to
poor performance of the model.
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\ Fig. 6. Detailed structure of the transformer used in the MIA field. MHA refers to the multi-head attention module. Norm represents layer normalization and MLP illustrates the
multilayer perception module.



;‘% Hugging Face

* Transformers -~

1, Search documentation
V4463 EM = ]

Installation

Adding a new model to
“transformers”

TUTORIALS

Run inference with pipelines

Write portable code with

AutoClass

Preprocess data

Fine-tune a pretrained model

Train with a script

Set up distributed training with

& Accelerate

Load and train adapters with

&) PEFT

Share your model

) 135560

SegFormer

(1 Search models, datasets, users... ¢ Models Datasets | Spaces © Posts | Docs

SegFormer

Overview

The SegFormer model was proposed in SegFormer: Simple and Efficient Design for Semantic

Segmentation with Transformers by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M.

Alvarez, Ping Luo. The model consists of a hierarchical Transformer encoder and a lightweight all-MLP
decode head to achieve great results on image segmentation benchmarks such as ADE20K and

Cityscapes.

The abstract from the paper is the following:

We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies
Transformers with lightweight multilayer perception (MLP) decoders. SegFormer has two appealing
features: 1) SegFormer comprises a novel hierarchically structured Transformer encoder which outputs
multiscale features. It does not need positional encoding, thereby avoiding the interpolation of

positional codes which leads to decreased performance when the testing resolution differs from
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Deep learning-based mobile application for the enhancement of pneumonia = [=&=
medical imaging analysis: A case-study of West-Meru Hospital
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ABSTRACT

Pneumonia remains a significant global health challenge, demanding innovative solutions. This study presents
a novel approach to pneumonia diagnosis and medical imaging analysis, leveraging advanced technologies.
The study used a Literature Review Methodology to study various scientific articles and involved healthcare
staff, including Doctors, Nurses, Radiologists and the community, in sharing their requirements for the study.
The findings led to the proposal for the integration of Deep Learning techniques, including Convolutional
Neural Network (CNN), as well as tools like YOLOvS, Roboflow, and Ultralytics, to revolutionize pneumonia
detection and classification. The EfficientDet-Lite2 model architecture was subsequently used to generate a
TensorFlow Lite Model, deployable in both Android and i0S mobile applications. The study’s outcomes reveal
a substantial improvement in the precision and recall metrics. These results signify a promising step forward
in empowering healthcare professionals with timely and reliable results for optimal patient management.
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We acknowledge our pneumonia detection model’s initial perfor-

mance, which currently stands at a commendable precision of 62.4%
and a recall of 65.6%. With a commitment to refining our approach,

we anticipate significant performance improvements. To augment our
capabilities, we have also integrated a pre-trained YOLOv8n model,
celebrated for its real-time processing and accuracy in object detection

tasks. The trained YoloV8 Model is then passed through the Efficient-
Det2 Model Architecture to generate the final version of the deployable

TensorFlow Lite model. This versatile addition extends the scope of our

solution, enabling it to efficiently identify pneumonia-related anomalies
in radiological images. As we progress, our focus remains on optimiz-
ing this combined model to further elevate its precision and recall,

reinforcing its potential impact in the realm of medical diagnostics.
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Challenges in model development and deployment

The model shows strong performance in detecting the
“no-pneumonia” class, indicating its reliability in identifying cases
without pneumonia. However, improvements are needed for the “high-
prneumonia” and “low-pneumonia” classes. Addressing class imbalance
through re-weighting or oversampling, incorporating advanced data
augmentation, and exploring more sophisticated architectures could
enhance recall and reduce false positives. Calibration techniques and
fine-tuning hyperparameters may improve training convergence and

performance. Collecting more labeled data, especially for underrep-
resented classes, will further improve generalization and detection

capabilities. These enhancements will bolster the model’s overall ef-
fectiveness in pneumonia detection and classification, supporting its
potential for practical applications and further research. Training a
large dataset was a challenge due to limited Google Colab resources.

The annotation process as well required significant time as each image
needed to be examined. Furthermore, maintaining TFLite code required

ongoing adjustments due to changing dependencies. Keeping up with
updates and ensuring compatibility became a recurring challenge,
which also applied to Flutter packages and Kotlin language changes.
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ABSTRAK

Artificial Intelligence [AI) telah berkembang pesat, termasuk di bidang kesehatan,
khususnya dalam analisis citra medis. Salah satu cabangnya, Deep Learning (DL),
menunjukkan kemampuan luar biasa dalam mengidentifikasi pola dan mengolah data
citra medis. Penelitian ini bertujuan untuk melakukan tinjauan pustaka sistematis
mengenai penerapan deep learning dalam analisis citra medis di Indonesia,
menggunakan metode Systematic Literature Review (SLR) berbasis model
Kitchenham. Dari 45 artikel yang diidentifikasi, 12 artikel dipilih berdasarkan kriteria
inklusi, eksklusi, dan relevansi untuk dianalisis lebih lanjut. Hasil studi menunjukkan
bahwa metode deep learning seperti Fourier Adaptive Recognition System (FARS)
dan Residual Neural Network (ResNet50) telah berhasil meningkatkan akurasi
diagnosa penyakit. Namun, tantangan vang dihadapi meliputi keterbatasan
infrastruktur medis, kurangnya data berkualitas, serta perlunya penerapan vang lebih
luas di fasilitas kesehatan. Temuan ini menunjukkan potensi besar deep learning
untuk meningkatkan pelayanan kesehatan di Indonesia, asalkan tantangan-tantangan
tersebut dapat diatasi.
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Judul

Teknologi

Klasifikasi

Hasil

Enhancing medical
image analysis with
unsupervised domain
adaptation approach
ACross microscopes
and magnifications

Fourier Adaptive

Recognition System
(FARS)

Digital

Penelitian ini
memperkenalkan FARS
sebagai model yang dirancang
untuk pengenalan adaptif
parasit malaria, namun juga
memiliki potensi dalam
diagnostik tumor dan kanker.
Dengan memanfaatkan
pelabelan segmentasi
semantik, pelatihan
adversarial, dan Color Domain
Aware Fourier Domain
Adaptation (F2ZDA), FARS
meningkatkan ekstraksi fitur
lintas domain dan magnifikasi.
Hasilnya menunjukkan
peningkatan kinerja signifikan
pada adaptasi lintas domain
dan magnifikasi,
menjadikannya langkah maju
dalam pengenalan parasit dan
citra medis lainnya.
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Simply Fine-Tuned
Deep Learning-Based
Classification for
Breast Cancer with
Mammograms

Convolutional
Neural Network
(ResNet50)

Digital

Penelitian ini
mengimplementasikan model
Residual Neural Network 50
(ResNet50] bersama dengan
algoritma gradient adaptif,
adaptive moment estimation,
stochastic gradient descent,
serta teknik augmentasi data
dan fine-tuning untuk
mengklasifikasikan massa
payudara dari gambar
mammogram. Hasil evaluasi
menunjukkan bahwa model ini
mampu mengklasifikasikan
kanker payudara ke dalam
kategori jinak dan ganas
dengan hasil yang memuaskan
dalam hal akurasi, nilai-p, AUC,
sensitivitas, presisi, Fl-score,
spesifisitas, dan kappa. Model
ini menunjukkan kelayakan
dalam membantu diagnosis
kanker payudara dari gambar
mammogram.
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